MATH 3060 Assignment 8 solution

Chan Ki Fung

December 15, 2021

1. This follows from the following two facts:

- The set of algebraic numbers is countable.
- The complement of a countable subset of \mathbb{R} is dense.

For the first item, note that for each fix integer $d>0$, the set S_{d} of integral polynomials with degree $\leq d$ is countable. And the set of all integral polynomials is $\cup_{d} S_{d}$, which is also countable. For each integral polynomial $f \not \equiv 0$, the set of roots Z_{f} is finite. Now, the set of algebraic numbers is equal to the set

$$
\cup_{f \text { nonzero, integral }} Z_{f}
$$

which is countable.
For the second item, let $Q \subset \mathbb{R}$ be countable, then

$$
\mathbb{R} \backslash Q=\cap_{q \in Q}(\mathbb{R} \backslash\{q\})
$$

is a countable intersection of open dense subsets of \mathbb{R}, and is itself dense by Baire' category theorem.
2. Let $\|\cdot\|$ be an arbitrary norm of \mathbb{R}^{n}. Denote e_{i} the standard basis of \mathbb{R}^{n}. Let $M=\max _{i}\left\{\left\|e_{i}\right\|\right\}$, then for any $x=\sum_{i} x_{i} e_{i} \in \mathbb{R}^{n}$, we have

$$
\|x\| \leq M \sum_{i}\left|x_{i}\right| \leq M \sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} 1^{2}}=\sqrt{n} M\|x\|_{2}
$$

This proves $\|\cdot\|$ is weaker than $\|\cdot\|_{2}$, we need to prove the converse. Suppose $\|\cdot\|$ is not stronger than $\|\cdot\|_{2}$, then we can find $0 \neq x_{n} \in \mathbb{R}$ so that $\left\|x_{n}\right\|_{2}>n\left\|x_{n}\right\|$. Replacing x_{n} with $\frac{x_{n}}{\left\|x_{n}\right\|_{2}}$, we may assume $\left\|x_{n}\right\|_{2}=1$, and thus assume $x_{n} \rightarrow x$ with respect to $\|\cdot\|_{2}$, in particular $\|x\|_{2}=1$ and $x \neq 0$.
Consider the identity map id $:\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|\right)$, we know this is a continuous map because $\|\cdot\|$ is weaker than $\|\cdot\|_{2}$, so we must have, $x_{n} \rightarrow x$ with respect to $\|\cdot\|$, but then $0 \neq\|x\|=\lim \left\|x_{n}\right\| \leq \lim \frac{1}{n}=0$, which is absurd.
3. Since $G_{i} \supset \cap G_{i}, G_{i}$ is open dense, and G_{i}^{c} is nowhere dense. Therefore,

$$
G^{c}=\cup G_{i}^{c}
$$

is a union of nowhere dense subsets of \mathbb{R}, and is thus of first category. So G is residual.
4. First we show $C_{\mathbb{Q}}$ is dense. In fact, let $\left(x_{n}\right)$ be a sequence converges to x and $\epsilon>0$, we can find $x^{\prime} \in \mathbb{Q}$ with $\left|x^{\prime}-x\right|<\epsilon$. If we define $\left(x_{n}^{\prime}\right)$ by $x_{n}^{\prime}=x_{n}+x^{\prime}-x$, then x_{n}^{\prime} converges to $x^{\prime} \in \mathbb{Q}$ and $d_{\infty}\left(\left(x_{n}\right),\left(x_{n}^{\prime}\right)\right)<\epsilon$. This shows that $C_{\mathbb{Q}}$ is dense, and in particular it is not nowhere dense.

Next we show that $C_{\mathbb{Q}}$ is of first category. In fact, we can write

$$
C_{\mathbb{Q}}=\cup_{q \in \mathbb{Q}} C_{q}
$$

where

$$
C_{q}=\left\{\left(x_{n}\right) \in C: \lim x_{n}=q\right\} .
$$

It suffices to show each C_{q} is nowhere dense. Note that C_{q} is closed because if $\left(x_{n}\right) \notin C_{q}$, then $\epsilon=\left|\lim x_{n}-q\right|>0$, and then $\left(x_{n}^{\prime}\right) \notin C_{q}$ for any $\left(x_{n}^{\prime}\right)$ with $d_{\infty}\left(\left(x_{n}\right),\left(x_{n}^{\prime}\right)\right)<\epsilon$.
Next we show that C_{q} has no interior points. In fact, let $\left(x_{n}\right) \in C_{q}$, then $\lim x_{n}=q$. For any $\epsilon>0$, if we define $\left(x_{n}^{\prime}\right)$ by $x_{n}^{\prime}=x_{n}+\epsilon / 2$, then $\lim x_{n}^{\prime} \neq q$, and so $x^{\prime} \notin C_{q}$.

