MATH 3060 Assignment 8 solution

Chan Ki Fung

December 15, 2021

1. This follows from the following two facts:

- The set of algebraic numbers is countable.
- The complement of a countable subset of \mathbb{R} is dense.

For the first item, note that for each fix integer d > 0, the set S_d of integral polynomials with degree $\leq d$ is countable. And the set of all integral polynomials is $\cup_d S_d$, which is also countable. For each integral polynomial $f \not\equiv 0$, the set of roots Z_f is finite. Now, the set of algebraic numbers is equal to the set

$$\cup_{f \text{ nonzero, integral}} Z_f$$
,

which is countable.

For the second item, let $Q \subset \mathbb{R}$ be countable, then

$$\mathbb{R} \setminus Q = \bigcap_{q \in Q} (\mathbb{R} \setminus \{q\})$$

is a countable intersection of open dense subsets of \mathbb{R} , and is itself dense by Baire' category theorem.

2. Let $|| \cdot ||$ be an arbitrary norm of \mathbb{R}^n . Denote e_i the standard basis of \mathbb{R}^n . Let $M = \max_i\{||e_i||\}$, then for any $x = \sum_i x_i e_i \in \mathbb{R}^n$, we have

$$||x|| \le M \sum_{i} |x_{i}| \le M \sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} 1^{2}} = \sqrt{n} M ||x||_{2}.$$

This proves $||\cdot||$ is weaker than $||\cdot||_2$, we need to prove the converse. Suppose $||\cdot||$ is not stronger than $||\cdot||_2$, then we can find $0 \neq x_n \in \mathbb{R}$ so that $||x_n||_2 > n||x_n||$. Replacing x_n with $\frac{x_n}{||x_n||_2}$, we may assume $||x_n||_2 = 1$, and thus assume $x_n \to x$ with respect to $||\cdot||_2$, in particular $||x||_2 = 1$ and $x \neq 0$.

Consider the identity map id : $(\mathbb{R}^n, || \cdot ||_2) \to (\mathbb{R}^n, || \cdot ||)$, we know this is a continuous map because $|| \cdot ||$ is weaker than $|| \cdot ||_2$, so we must have, $x_n \to x$ with respect to $|| \cdot ||$, but then $0 \neq ||x|| = \lim ||x_n|| \le \lim \frac{1}{n} = 0$, which is absurd.

3. Since $G_i \supset \cap G_i$, G_i is open dense, and G_i^c is nowhere dense. Therefore,

 $G^c = \cup G_i^c$

is a union of nowhere dense subsets of $\mathbb R,$ and is thus of first category. So G is residual.

4. First we show $C_{\mathbb{Q}}$ is dense. In fact, let (x_n) be a sequence converges to x and $\epsilon > 0$, we can find $x' \in \mathbb{Q}$ with $|x' - x| < \epsilon$. If we define (x'_n) by $x'_n = x_n + x' - x$, then x'_n converges to $x' \in \mathbb{Q}$ and $d_{\infty}((x_n), (x'_n)) < \epsilon$. This shows that $C_{\mathbb{Q}}$ is dense, and in particular it is not nowhere dense.

Next we show that $C_{\mathbb{Q}}$ is of first category. In fact, we can write

$$C_{\mathbb{Q}} = \bigcup_{q \in \mathbb{Q}} C_q$$

where

$$C_q = \{(x_n) \in C : \lim x_n = q\}$$

It suffices to show each C_q is nowhere dense. Note that C_q is closed because if $(x_n) \notin C_q$, then $\epsilon = |\lim x_n - q| > 0$, and then $(x'_n) \notin C_q$ for any (x'_n) with $d_{\infty}((x_n), (x'_n)) < \epsilon$.

Next we show that C_q has no interior points. In fact, let $(x_n) \in C_q$, then $\lim x_n = q$. For any $\epsilon > 0$, if we define (x'_n) by $x'_n = x_n + \epsilon/2$, then $\lim x'_n \neq q$, and so $x' \notin C_q$.